Member-only story

FLUTE: Breaking Barriers for Federated Learning Research at Scale

Caio Moreno
2 min readJul 21, 2022

--

What is Federated learning?

Federated learning (also known as collaborative learning) is a machine learning technique that trains an algorithm across multiple decentralized edge devices or servers holding local data samples, without exchanging them. This approach stands in contrast to traditional centralized machine learning techniques where all the local datasets are uploaded to one server, as well as to more classical decentralized approaches which often assume that local data samples are identically distributed.

Federated learning enables multiple actors to build a common, robust machine learning model without sharing data, thus allowing to address critical issues such as data privacy, data security, data access rights and access to heterogeneous data. Its applications are spread over a number of industries including defense, telecommunications, IoT, and pharmaceutics.

Source: Federated learning — Wikipedia

FLUTE: A scalable federated learning simulation platform

Federated learning has become a major area of machine learning (ML) research in recent years due to its versatility in training complex models over massive amounts of data without the need to share that data with a centralized entity. However, despite this flexibility and the amount of research already conducted, it’s difficult to implement due to its many moving parts — a significant deviation from…

--

--

Caio Moreno
Caio Moreno

Written by Caio Moreno

Solutions Architect @databricks | Professor | PhD | Ex-Microsoft | Ex-Avanade/Accenture | Ex-Pentaho/Hitachi | Ex-AOL | Ex-IT4biz CEO. (Opinions are my own)

No responses yet