Member-only story
The Shift from Models to Compound AI Systems
Something that got my attention recently and I would like to share here.
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, Ali Ghodsi Feb 18, 2024
AI caught everyone’s attention in 2023 with Large Language Models (LLMs) that can be instructed to perform general tasks, such as translation or coding, just by prompting. This naturally led to an intense focus on models as the primary ingredient in AI application development, with everyone wondering what capabilities new LLMs will bring. As more developers begin to build using LLMs, however, we believe that this focus is rapidly changing: state-of-the-art AI results are increasingly obtained by compound systems with multiple components, not just monolithic models.
For example, Google’s AlphaCode 2 set state-of-the-art results in programming through a carefully engineered system that uses LLMs to generate up to 1 million possible solutions for a task and then filter down the set. AlphaGeometry, likewise, combines an LLM with a traditional symbolic solver to tackle olympiad problems. In enterprises, our colleagues at Databricks found that 60% of LLM applications use some form of retrieval-augmented generation (RAG), and 30% use multi-step chains. Even researchers working on traditional language model tasks, who used to report results from a single LLM…